

Strength. Performance. Innovation.

Finding the Right Fit: Perfecting Your Nesting Process

Webinar Series

Distribuitor: SM TECH - www.sm-tech.ro

Welcome

www.wilsontool.com

Finding the Right Fit: Perfecting Your Nesting Process

Wilson Tool Hosts

Elizabeth Graham Vanessa Greer

Presenter

Scott Tacheny

Strength. Performance. Innovation.

Finding the Right Fit: Perfecting Your Nesting Process

by Glen Shuldes & Scott Tacheny

Not this type of nesting

...... but rather this type of nesting

Nesting Topics

Problem

- Parts falling out
 - Weak Joints
 - Sheet Shake
- Pinch Points
- Uneven wear or reduced tool life
 - Even galling

Solution

- Tabbing
 - Options
 - When and where
- Tool solutions
- Programming methods for slitting
 - Straight line nibbling
 - Odd-even nibbling

- Tabs
- Shake-a-part
- Microjoints
- Etc.

Wire Tab

Weak, unstable and does not break cleanly. Tab width is roughly 33% of the material thickness. Dangerous and should be the last resort.

Corner Tab

Most common shaker tab. Normally created with a rectangle or square punch. Roughly 10% of the material thickness is left in both directions.

Corner Tab

Most common shaker tab. Normally created with a rectangle or square punch. Roughly 10% of the material thickness is left in both directions.

Equilateral Triangle

A standard shape tool. Creates triangular tabs that break cleanly. Tab width is roughly 33% of the material thickness.

Inverted Diamond Tool

A common special shape tool. Creates diamond shaped tabs that break cleanly. Tab width is roughly 33% of the material thickness.

Inverted Diamond Tool with "horns"

A special shape tool similar to the Inverted Diamond. Creates diamond shaped tabs that break slightly below the edge. Tab width is roughly 33% of the material thickness.

Dash Tool

A form-up / form-down tool that can create any length tab. Normally used on chamfered corners.

Half Shear tool

A forming tool that can create a relatively long tab that breaks off flush to the edge.

Half Shear tool

A forming tool that can create a relatively long tab that breaks off flush to the edge.

Tabbing – Halfshear (Ganged & bent on Brake)

Tabbing – Halfshear (Ganged & bent on Brake)

Tabbing - Where and When

How to prevent "sheet shake" at the end of your program

Tabbing - Sheet Shake

How to prevent "Sheet Shake" at the end of your program

Tabbing - Sheet Shake & Common Line Cutting

Tabbing - Common Line Cutting

Sheet Shake is inevitable in this situation

Tabbing - Nested Common Line Cutting

Combat Sheet Shake by making islands

Tabbing - Summary

Wire tabs

Dangerous and should be outlawed

Corner Tabs

- Must have sharp corners to put tabs on
- Good sheet stability depending on tab locations

Diamond tabs

- May break on the wrong side
- Poor sheet stability

Triangle tabs

- Require tool rotation
- Better stability than diamond tabs

Dash tool tabs

- Different edge look and feel (used on chamfer corners)
- Good stability and can cure Sheet Shake

Half Shear tabs

- Sheet is formed which can cause programming issues
- Good stability and can cure Sheet Shake

Wilson Tabbing Sample

Those ugly bumps along a slit-edge

Solutions

- 2-D Shapes Mixing and Matching
- Wheel Tools Rolling to Success

Commonly caused by slitting or nibbling

Pinch points from standard rectangle

Resolved with an Obround punch in a Rectangle die

Rectangle punch in Rectangle die

Obround punch in Rectangle die

Resolved with an Obround punch in a Rectangle die

Obround punch in Rectangle die

Avoided with a Shear Wheel

Perfect for some applications

Resolved with Wheel tool

Apply the Rolling Pincher before punching the edge

Also effective to pre-mask burrs on the bottom of the sheet

Cure Pinch Points & Tabbing Problems

Cure Pinch Points & Tabbing Problems

Pinch Points - Summary

Mixing it Up

- Obround Punch in Rectangle Die
- Long-D Punch in a Rectangle Die

Rolling to Success

- Shear
- Rolling Pincher
 - Top
 - Top & Bottom (hide the burr before it happens)

Uneven Tool Wear or Reduced Tool Life (due to slitting rules & methodology)

Uneven Tool Wear or Reduced Tool Life

↑
Intended
Progression
Direction

↓

Uneven Tool Wear or Reduced Tool Life

Uneven Tool Wear or Reduced Tool Life

Minimum Overlap
≈ Corner Rad + ½ Mat'l Thk.

Maximum Overlap
≈ ¼ tool length
(no more than ½ tool length

If you were to progress in this direction

Use a large "minimum" step values

(≈ Width - Corner Rad - ½ Mat'l Thk.)

Small step values are intended only for rounds so that you can minimize the depth of a scallop

Non-Intended

← Progression →

Direction

Minimum Progressions

Small step values are intended only for rounds so that you can minimize the depth of a scallop

Looking at a Section Without the Slitting

Traditional slitting produces an unbalanced load

Odd-even slitting produces a balanced load

Traditional slitting produces Pinch Points

Obround punch with a rectangle die eliminates Pinch Points

Strength. Performance. Innovation.

Does your programming software look out for your tooling?

If not, why not ask?

Slitting - Summary

Improving Tool Life

- Take your steps in the right direction (lengthwise)
- Don't follow the crowd (take an odd approach)

Conclusion

Problem

- Parts falling out
- Pinch Points
- Uneven wear or reduced tool life

Solution

- The right tabs
- Tool solutions
- Adjusting your programming rules
 - Ask more from your vendors!

Q & A

Thank You!

Scott can be reached at scott.tacheny@wilsontool.com

General questions: marketing@wilsontool.com